Understanding Electromagnetic Treatments

Understanding Electromagnetic Treatments

Here is a thorough article by our favorite pain managment doctor, Dr. Forest Tennant, explaining how electricity flows through our bodies and how Electromagnetic Treatments affect His theory is that pain causes electricity to pool instead of flowing freely, thus initiating a cycle of increasing tissue damage, pain, and impairment.

In addition to immediate pain relief, the administration of electricity or its derivatives may assist tissue healing and regeneration by cell stimulation, removal of edema and inflammatory mediators, and angiogenesis.

Many facts are known about body electricity and magnetism. Most of these facts, however, have little established practicality relative to pain treatment. We know enough, however, to provide a scientific rationale for the various electromagnetic measures being used today.1-4 This paper attempts to set out what we do and do not know so that practitioners can use the electromagnetic measures that best fit their brand and style of practice, pocketbook, and patient profile

Definition of EMT

There are many measures that attempt to remove, mobilize, or alter electric charges or currents in the body for therapeutic purposes.

Basic electromagnetic measures have been used for centuries and are of 2 types: those that remove or mobilize body electricity and those that administer an electronic current or a derivative of a current (see Table 1). The former includes such simple measures as mineral soaking in hot water, copper bracelets, hot water, and needle insertion. The latter embraces the use of electric currents or a derivative of a current in the form of a sound or an acoustic wave or an electromagnetic energy wave. Administered electric currents or their derivatives have 2 attributes: (1) immediate pain relief and (2) regeneration of tissues.

Often Misunderstood

What is lost among the insulting and fraudulent claims of some marketers, however, is the fact that some extraordinary new and impressive electromagnetic devices have come onto the commercial market.

n addition, we now have a good understanding, within some scientific limits, of why magnets, acupuncture, electric currents, acoustic waves, and electromagnetic energy waves have much to offer patients with pain.

Be very clear, however, that electromagnetic measures are complementary and not a substitute for the time-tested treatments of pharmacotherapy, nutrition, exercise, and surgery.

Opposites Attract

Opposite electrical charges attract each other. This is the first basic principle in understanding electromagnetic measures. All body tissue contains electromagnetic energy. All matter, including cells, are composed of atoms, which contain in their nuclei at least 1 proton and 1 neutron. At least 1 electron circles the nucleus of each atom. All living tissue contains biologic electricity and has varying proportions of electrons (negative charges), protons (positive charges), and neutrons. An excess of either positive or negative charges in tissue attracts the other and causes a flow of electrons. Electrons that move or mobilize are electricity.2,3 We do not know why, where, or how body tissues make electricity or change polarity from positive to negative or vice versa.

Metals

Metal elements such as copper, magnesium, and iron are positively charged and attract negative charges (electrons). This simple principle of electron attraction is the basis for many age-old electromagnetic measures. They include the use of copper bracelets or necklaces and needle insertion such as acupuncture or “dry” needling of a trigger point.

Water

Water is an excellent conductor of electricity. Water has a slightly negative charge because oxygen is slightly more negative than is hydrogen, which is slightly positive.

When heated, however, water will speed up conduction of electricity in the body. If a salt with a positive charge, such as sodium or magnesium, is added to warm water, it will immediately attract negative electric charges. The combination of warm water and positively charged salts has been the basis of pain relief by mineral bath soaking for centuries.

Heat

Anything that increases blood flow, including an increase in heart rate caused by exercise or heat, will move electricity. Massage or vibration will also move the body’s electricity, just as you can squeeze water out of a washcloth.

Figure 1. Electricity from a damaged nerve along with waste products from damaged blood and lymph vessels pool, forming a pain site. Inflammatory mediators and opioid receptors appear shortly after injury. Cure requires tissues in the pain site to regenerate

Pooling of Electricity

A fundamental to understanding electromagnetic measures is the pooling of electric charges around damaged nerves.

If the wound is open to the air, the emitted electricity merely escapes into the atmosphere. If the injury is under the skin, however, the emitted electricity will collect and pool around the damaged nerves as their normal flow or circuit is interrupted. It is axiomatic that if a nerve is damaged, its blood supply and lymph drainage will also be damaged. This tissue damage therefore produces a pooling of electricity, blood products, lymph drainage, and inflammatory mediators.

Understanding Electromagnetic Treatments (Page 2)

Basically, a pain site is a wound under the skin that is simply not visible. The pain site will become warm to the touch as inflammation, which is biologic waste heated by electricity, evolves. Interestingly, opioid receptors propagate in an inflammatory pain site, and it is theorized that these receptors are there to attract circulating endorphins to enhance the inflammatory response and relieve pain5,6 (see Figure 1). One of the best exhibits of inflammatory pain sites can be seen as “hot spots” on thermography (see Figure 2).

Although there are a lack of case studies in the literature, some patients with severe, intractable pain anecdotally relate that they retain electricity and, in effect, become a capacitor filled with electricity. These patients relate stories of burning out light bulbs, computers, and wristwatches when they touch them. They can’t touch other people without causing a severe shock, and they may complain that they can’t kiss their spouse.

Figure 2. Inflamed pain sites that contain pooled electricity and biologic waste from injured nerves and blood and lymph vessels appear as red, “hot” spots on a thermogram. This thermogram shows typical painful osteoarthritis of the hand.

Some patients with pain, such as those with severely damaged clumps of nerves as found in the neck, dura, or lumbar-sacral regions, could possibly retain and emit a large amount of electricity. The question, however, is whether the emitted electricity is retained in the entire body or if it only pools around the injured nerves. Also, is it retained, and what are the consequences of retention?

Magnets Mobilize Electricity

Because pain is, to a great extent, caused by “pooled” or “trapped” electricity, a magnet or magnetic energy wave brought near a pain site causes pooled electricity to mobilize. Magnets also likely attract iron in red blood cells and increase blood flow into a pain site, which promotes mobilization of pooled electricity and inflammatory mediators.

History of Pain Relief

Pain relief by electricity is legend. In ancient Greece, Egypt, and Rome, electric eels were used to treat arthralgias and migraines.

Among the first electrical instruments used for pain treatment was the “Baghdad Battery.” This was a copper plate around an iron rod placed at the core inside a small clay pot. Water inside the pot would generate a low-level current, which could be placed over a painful area. These batteries date to about 225 to 640 AD.

Electric Currents Promote Regeneration and Healing

Temporary pain relief produced by an electric current device is well established, but it is less widely known that electric currents and their derivatives may heal and regenerate tissue. The seminal clinical discovery and application of this phenomenon is the bone stimulator based on the monumental work of the orthopedic scientist Robert Becker, MD

Becker’s work is well summarized in his 1985 book The Body Electric: Foundation of Life.1

In his book, Dr. Becker describes an experiment conducted by the Russian scientist A. M. Sinyukhin of Lomonosov State University in Moscow that illustrates how electrical currents produce healing. Sinyukhin cut off one branch from each of a series of tomato plants

The electricity-assisted plants restored their branches up to 3 times faster than the control plants.

How Does Electricity Relieve Pain?

If one administers an electric current or one of its derivatives to a pain site, pain relief may occur within seconds or minutes.8-13 The reason for this is not entirely known

Understanding Electromagnetic Treatments (Page 3)

It is this writer’s conviction that an electric current and its derivatives disperse pooled electricity and/or change the polarity of pooled electricity to reduce pain. Painful, pooled electricity can be either dispersed into the surrounding tissue or channeled into intact nerves. The dispersion theory is enhanced by the clinical observation that pain may be relieved for hours or days after a single administration of electricity, but the pain will recur. The pain returns when electricity emitted from the damaged nerves again recollects and pools. In summary, we must labor with an incomplete understanding of the precise mechanisms by which an electric current or one of its derivatives produces short-term pain relief.

Derivatives of Electric Currents

The energy waves generated by an electric current are collectively known as the “electromagnetic spectrum”

Of the waves in the electromagnetic spectrum, laser, infrared, and radio are currently used in pain treatment.

n addition to electromagnetic energy waves, scientists found a way to make an acoustic or sound wave from an electric current. Ultrasound, the first innovation, has been a mainstay of electomedicine for more than 5 decades

A related technology now available for pain treatment is called extracorporeal shockwave therapy (ESWT). ESWT is a high-pressure acoustic wave derived by passing an electric current through a crystal. Clinical investigations have found that some recalcitrant problems such as plantar fascitis and chronic epicondylitis respond to this new derivative of an electric current.14,15

Regeneration of Tissue

An exciting area of current research has been the use of electrical currents to regenerate tissue—and even “cure” a pain site.

The regenerative effects on tissue are well documented and are summarized in Table 2. They include growth of cells, angiogenesis, reduction of edema, and clearing of inflammatory mediators.

Use With Other Therapies

The simultaneous use of drugs and electromagnetic measures is highly complementary and enhancing.

Some pain treatment drugs directly or indirectly act to control electrical activity. Opioids suppress electrical activity.4 The antidepressants and neuropathic agents attempt to curtail electrical transmission at synapses. Anesthetics and some oral agents aim to retard the transmission of electronic signals by blocking sodium or calcium channels in nerve membranes. Topical treatment agents, including opioids, anti-inflammatory agents, and homeopathic solutions, can be used simultaneously with or even diffused through the skin into a pain site by many of the electromagnetic devices that administer an electric current or an electromagnetic energy wave.

Side Effects

Electromagnetic measures can produce side effects. Even a simple magnet or piece of copper may cause pain in some patients as it mobilizes the body’s electricity. Electric currents and electromagnetic energy waves are actual matter. When administered into pain sites, they may cause rather than relieve pain.

Understanding Electromagnetic Treatments (Page 4)

Future ResearchThe revelations that severe chronic pain may induce brain atrophy and cause the memory of severe pain to become imbedded in the neurons and/or glial cells of the spinal cord and/or brain are a major challenge facing pain practioners.20-22 Electricity of some form is likely responsible for abnormal central neuroplasticity and brain atrophy that may occur with severe pain. The question of whether pooled electricity or abnormal electronic impulses generated by damaged nerves reach the brain and cause neuroplasticity or atrophy is a most serious one. It is obvious that something—probably a form of bioelectricity—is causing brain tissue loss in patients who develop abnormal neuroplasticity.21,22 Do clinicians need to more aggressively extract electricity from patients with acute injuries? Can some of the electromagnetic therapies described here prevent or correct abnormal central neuroplasticity? These questions beg for answers.

Conclusion

The precise mechanisms by which electric currents and their derivatives relieve pain is uncertain. Apparently, they involve blocking of the afferent-efferent gates in the spinal cord, activation of endogenous endorphins, dispersion of pooled electricity into surrounding tissue, or change in polarity of pooled electricity. In addition to immediate pain relief, the administration of electricity or its derivatives may assist tissue healing and regeneration by cell stimulation, removal of edema and inflammatory mediators, and angiogenesis.

Advertisements

Other thoughts?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s