Low Tolerance for Pain May Be Genetic

Low Tolerance for Pain May Be Genetic | WIRED– Laura Sanders – Mar 2010

One form of a common genetic variant may ratchet up pain sensitivity in people who have it, researchers report online March 8 in the Proceedings of the National Academy of Sciences.

In the new study, researchers led by clinical geneticist Geoffrey Woods of the Cambridge Institute for Medical Research in the United Kingdom examined the DNA of 578 people with the painful condition osteoarthritis.

Woods and his colleagues searched for genetic variations that might be linked to how much pain a patient reported feeling — a subjective measure, Woods says, but currently the best researchers can do.  

The team found that people who reported higher levels of pain were more likely to carry a particular DNA base, an A instead of a G, at a certain location in the gene SCN9A.

The A version is found in an estimated 10 to 30 percent of people, Woods says, though its presence varies in populations of different ancestries.

This gene version may set the pain threshold, he says. “You’re more sensitive to pain.”

The same trend — higher pain levels reported by people who carried the A — held true in cohorts of people with other painful conditions including sciatica, phantom limb syndrome and lumbar discectomy

The researchers also looked for the gene variant in 186 healthy women who had been assessed based on their responses to a number of painful stimuli.

The women with the highest responses were more likely to have the A variant instead of the G.

The genetic variation affects the structure of a protein that sits on the outside of nerve cells and allows sodium to enter upon painful stimuli.

The sodium influx then spurs the nerve cell to send a pain message to the brain.

Researchers already knew that people with mutations in SCN9A can have extreme pain syndromes.

This channel protein is a promising target for extremely specific and effective pain drugs, Waxman says: “Given that this channel has been indicted, it would be nice if we could develop therapeutic handles that turn it off or down.”

Genetic changes that render the protein completely inactive can leave a person impervious to pain, although otherwise healthy.

Although these syndromes are extreme cases, they strongly implicate SCN9A as important for pain thresholds, Waxman says.

In additional laboratory studies, the researchers found that nerve cells carrying the A variant of the gene took longer to close their sodium gates, allowing a stronger pain signal to be sent to the brain.

Nerve cells carrying the more common G version of the gene snapped shut faster, stopping the pain signal sooner.

Advertisements

Other thoughts?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s