Tag Archives: genetics

Management of chronic pain in EDS – part 1

Management of chronic pain in Ehlers–Danlos syndrome: Two case reports and a review of the literaturejournals.lww.com –  November 2018 – Part 1

I have a lot to say about this long article, so I’m going to break it into 3 separate posts:

Ehlers–Danlos syndromes (EDSs) are a heterogeneous group of heritable connective tissue disorders involving defective collagen synthesis.

Patients with EDS are prone for chronic myofascial pain, apart from other comorbidities.

Although the initial pathology is commonly nociceptive, progression of EDS leads to neuropathies and central sensitization of pain signals.   Continue reading

The Landscape of Chronic Pain

The Landscape of Chronic Pain: Broader Perspectives – free full-text /PMC6572619/ – by Mark I. Johnson – May 2019

Here is a recent lengthy review of what’s known about chronic pain: the various aspects of various types of pain under various circumstances.

This article shows the folly of making any numerical one-dimensional measurement of chronic pain, which can arise from a variety of causes, vary greatly over time and location, and make such intrusive incursions into our inner lives.

This special issue on matters related to chronic pain aims to draw on research and scholarly discourse from an eclectic mix of areas and perspectives.   Continue reading

Personalized Pain Medicine

Personalized Pain Medicine – By Lynn Webster, M.D. – October, 2018

Here Dr. Webster explains how our genes control both pain sensitivity and drug sensitivity. Many of us with EDS find ourselves with the most unfortunate combination of high pain sensitivity and low drug sensitivity (due to metabolic issues).

Below is an edited excerpt from a chapter titled, Pharmacogenetics and Personalized Medicine in Pain Management, that Inna Belfer, MD PhD and I published in Clinics in Laboratory Medicine, Volume 36, Issue 3, September 2016.

Pharmacogenetic therapy in people with pain requires consideration of 2 different genetic substrates to determine the outcome of pharmacotherapy.

  1. The first is the genetic contribution to a variety of different pain types, and
  2. the second is the genetic influence on drug effectiveness and safety. Continue reading

Genetic tests for antidepressant effectiveness?

Can genetic tests gauge how well antidepressants will work?By Rebecca Robbins @rebeccadrobbins – September 28, 2018

It can be notoriously difficult for psychiatrists and patients to determine which antidepressant might be most effective, or which might cause side effects.

And so Color Genomics, a company that already sells genetic tests to determine someone’s risk of developing certain cancers, said this week that it will also begin to offer a DNA test to determine how well widely used antidepressants are likely to work for patients.

With the new test2 (part of a $249 product), Color joins several dozen companies probing patients’ DNA in search of insights to help inform decisions about which psychiatry medications patients should take.  Continue reading

Genetics controls vulnerability to opioid addiction

Why genetics makes some people more vulnerable to opioid addiction – and protects others – 2018

From a scientific standpoint, addiction is a disease. And, as researchers who study opioid addiction, we’re hopeful about where epigenetics, the science of how DNA code is regulated, can lead us.

Just as genetics can affect a person’s risk for heart disease, cancer or diabetes, it can also make them more or less susceptible to addiction.

A great deal of research in the last decade has focused on tiny differences in a person’s DNA – termed single-nucleotide polymorphisms, or SNPs. These SNPs can indicate whether you have a higher or lower rick for addiction.   Continue reading

Role of Stress Gene in Chronic Pain

Researchers Elucidate Role of Stress Gene in Chronic Pain – from NIH – Posted on  by 

For most people, pain eventually fades away as an injury heals. But for others, the pain persists beyond the initial healing and becomes chronic, hanging on for weeks, months, or even years.

Now, we may have uncovered an answer to help explain why: subtle differences in a gene that controls how the body responds to stress.

In a recent study of more than 1,600 people injured in traffic accidents, researchers discovered that individuals with a certain variant in a stress-controlling gene, called FKBP5, were more likely to develop chronic pain than those with other variants.   Continue reading

Can a genetic test predict risk of opioid addiction?

Can a genetic test predict risk of opioid addiction? – by Roger Chriss | Genetic Literacy Project | July 31, 2018

Genetic tests are still in their infancy and reveal only the broadest strokes of our individual makeup. Merely knowing which genes we carry is only the beginning of decoding our DNA. Each gene can also be “activated” or “deactivated” by our own bodies in response to the environment, internal or external.

Additionally, almost all traits are governed by a multitude of genes and how they interact; genetic codes are a little like recipes in that ingredients aren’t the only concern, but how they are combined and processed/cooked.

This makes general genetic tests extremely imprecise when they are looking to establish a cause and effect relationship between specific genes and specific traits, like a propensity toward becoming addicted. Continue reading

How Exercise Changes Gene Activity

How Exercise Changes Fat and Muscle Cells – NYTimes.com – By Gretchen Reynolds – July 31, 2013

Exercise seems able to drastically alter how genes operate.

One powerful means of affecting gene activity involves a process called methylation, in which methyl groups, a cluster of carbon and hydrogen atoms, attach to the outside of a gene and make it easier or harder for that gene to receive and respond to messages from the body.

Exercise promotes health, reducing most people’s risks of developing diabetes and growing obese. But just how, at a cellular level, exercise performs this beneficial magic — what physiological steps are involved and in what order — remains mysterious to a surprising degree.   Continue reading

Postoperative Pain Risk Linked to Genetics

Chronic Postoperative Pain Risk Linked to Gene Polymorphisms – Jan 2018

Genetics may be a factor in the experience of chronic pain post surgery, according to a study published online in Anesthesiology.

Yuanyuan Tian, PhD, from the Chinese University of Hong Kong, and colleagues genotyped 638 polymorphisms within 54 pain-related genes in 1152 surgical patients who were enrolled in the Persistent Pain after Surgery Study. 

Polymorphisms were validated in a matched cohort of 103 patients with chronic postsurgical pain and 103 pain-free patients.  Continue reading

Epigenetics, cellular memory, and gene regulation

Epigenetics, cellular memory and gene regulation: Current Biology – July 2016

The field described as ‘epigenetics’ has captured the imagination of scientists and the lay public. 

However, when describing these scientific advances as ‘epigenetic’, we encounter the problem that this term means different things to different people, starting within the scientific community and amplified in the popular press.

To help researchers understand some of the misconceptions in the field and to communicate the science accurately to each other and the lay audience, here we review the basis for many of the assumptions made about what are currently referred to as epigenetic processes.  Continue reading